正在使用--preload初始化DaskWorker中的全局任務模塊?
更新時間:2024-04-02 14:01:46問題闡述
我試圖實現類似于這些問題(,)的內容,其中我有一個(相對)大的模型,我希望在接受需要該模型的任務的工作線程子集上預初始化該模型。理想情況ꩵ下,我甚至不希望客戶端計算機具有該模型。
在發現這些問題之前,我最初的嘗試是在共享模塊worker_task.model
中定義delayed
任務,并在工作程序的--preload
腳本中為該任務分配一個模塊全局變量(例如worker_tasks.model.model
)以供該任務使用;然而,由于某種原因,這并不起作用-該變量在預加載腳本中設置,但在調用該任務時仍為None
。
init_Model_worker.py:
import logging
from uuid import uuid4
from worker_tasks import model
def dask_setup(worker):
model.model = f'<mock model {uuid4()}>'
logger = logging.getLogger('distributed')
logger.warning(f'model = {model.model}')
worker_tasks/model.py:
import logging
import random
from time import sleep
from uuid import uuid4
import dask
model = None
@dask.delayed
def compute_clinical(inp):
if model is None:
raise RuntimeError('Model not initialized.')
sleep(random.uniform(3, 17))
return {
'result': random.choice((True, False)),
'confidence': random.uniform(0, 1)
}
這是我啟動它并將某些內容提交給計劃程序時的工作日志:
> dask-worker --preload init_model_worker.py tcp://scheduler:8786 --name model-worker
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed.nanny - INFO - Start Nanny at: 'tcp://172.28.0.4:41743'
distributed.diskutils - INFO - Found stale lock file and directory '/worker-epptq9sh', purging
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed - WARNING - model = <mock model faa41af0-d925-46ef-91c9-086093d37c71>
distributed.worker - INFO - Start worker at: tcp://172.28.0.4:37973
distributed.worker - INFO - Listening to: tcp://172.28.0.4:37973
distributed.worker - INFO - nanny at: 172.28.0.4:41743
distributed.worker - INFO - bokeh at: 172.28.0.4:37766
distributed.worker - INFO - Waiting to connect to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Threads: 4
distributed.worker - INFO - Memory: 1.93 GB
distributed.worker - INFO - Local Directory: /worker-mhozo9ru
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Registered to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.core - INFO - Starting established connection
distributed.worker - WARNING - Compute Failed
Function: compute_clinical
args: ('mock')
kwargs: {}
Exception: RuntimeError('Model not initialized.')
您可以看到,重新加載預加載腳本后,model
是<mock model faa41af0-d925-46ef-91c9-086093d37c71>
;但當我嘗試從任務中調用它時,得到None
。
我將嘗試根據對其他問題的回答來實施精準答案,但我有幾個與Worker預加載相關的問題:
- 為什么在預加載腳本中分配任務后,調用任務時模型
None
會出現? - 是否一般建議避免在Worker
--preload
腳本中執行此類操作?從客戶端調用工作進程狀態的初始化是否更好?如果是,為什么?
精準答案
我懷疑模型變量會立即綁定到您的函數中,但是它會序列化函數。您可以嘗試執行以下操作:
@dask.delayed
def compute_clinical(inp):
from worker_tasks.model import model
if model is None:
raise RuntimeError('Model not initialized.')
或者,與其將變量分配給全局模塊作用域(這在Pythonཧ中可能很難理解),不如嘗試將其分配給Workeཧr本身。
from dask.distributed import get_worker
def dask_setup(worker):
worker.model = f'<mock model {uuid4()}>'
@dask.delayed
def compute_clinical(inp):
if get_worker().model is None:
raise RuntimeError('Model not initialized.')